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Abstract The quantification of differences between two or
more physiological states of a biological system is among
the most important but also most challenging technical
tasks in proteomics. In addition to the classical methods of
differential protein gel or blot staining by dyes and
fluorophores, mass-spectrometry-based quantification
methods have gained increasing popularity over the past
five years. Most of these methods employ differential stable
isotope labeling to create a specific mass tag that can be
recognized by a mass spectrometer and at the same time
provide the basis for quantification. These mass tags can be
introduced into proteins or peptides (i) metabolically, (ii) by
chemical means, (iii) enzymatically, or (iv) provided by
spiked synthetic peptide standards. In contrast, label-free
quantification approaches aim to correlate the mass spec-
trometric signal of intact proteolytic peptides or the number
of peptide sequencing events with the relative or absolute
protein quantity directly. In this review, we critically
examine the more commonly used quantitative mass
spectrometry methods for their individual merits and discuss
challenges in arriving at meaningful interpretations of
quantitative proteomic data.

Keywords Quantitative proteomics . Mass spectrometry .

Stable isotope labeling

Introduction

There is a clear trend in the life sciences towards the study
of biological entities at the system level. This requires
analytical tools that can identify the component parts of the
system and measure their responses to a changing environ-
ment. Towards this end, a multitude of transcriptomic,
proteomic, and metabolomic profiling technologies have
been developed, and proteomics in particular is continuing
to evolve rapidly. Still, out of the many thousand proteomic
studies published to date, only a small minority has
attempted to provide a comprehensive quantitative descrip-
tion of the biological system under investigation. Despite
the phenomenal impact of mass spectrometry and peptide
separation techniques on proteomics, the identification and
quantification of all of the proteins in a biological system is
still an unmet technical challenge (Fig. 1). While for
unicellular organisms proteomic coverage of the genome
has been occasionally achieved beyond 50%, coverage for
higher organisms rarely exceeds 10%. For protein quanti-
fication, these figures are significantly smaller due to the
fact that the data quality, in terms of information content,
required for quantification by far exceeds that for protein
identification.

The classical proteomic quantification methods utilizing
dyes, fluorophores, or radioactivity have provided very
good sensitivity, linearity, and dynamic range, but they
suffer from two important shortcomings: first, they require
high-resolution protein separation typically provided by 2D
gels, which limits their applicability to abundant and soluble
proteins; and second, they do not reveal the identity of the
underlying protein. Both of these problems are overcome by
modern LC-MS/MS techniques. However, mass spectrom-
etry is not inherently quantitative because proteolytic
peptides exhibit a wide range of physicochemical properties
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such as size, charge, hydrophobicity, etc. which lead to large
differences in mass spectrometric response. For accurate
quantification, it is therefore generally required to compare
each individual peptide between experiments. In most

proteomic workflows, this can technically be achieved in a
number of ways (Fig. 2). One major approach is based on
stable isotope dilution theory which states that a stable
isotope-labeled peptide is chemically identical to its native
counterpart and therefore the two peptides also behave
identically during chromatographic and/or mass spectro-
metric analysis. Given that a mass spectrometer can
recognize the mass difference between the labeled and
unlabeled forms of a peptide, quantification is achieved by
comparing their respective signal intensities. Stable isotope
labeling was introduced into proteomics in 1999 by three
independent laboratories [1–3] and has since been adopted
widely in the field (for earlier reviews see, e.g., Refs. [4–
11]). Isotope labels can be introduced as an internal
standard into amino acids (i) metabolically, (ii) chemically,
or (iii) enzymatically or, alternatively, as an external
standard using spiked synthetic peptides [11]. More
recently, alternative strategies—often referred to as label-
free quantification—have emerged. Label-free methods aim
to compare two or more experiments by (i) comparing the
direct mass spectrometric signal intensity for any given
peptide or (ii) using the number of acquired spectra

Fig. 2 Common quantitative mass spectrometry workflows. Boxes in
blue and yellow represent two experimental conditions. Horizontal
lines indicate when samples are combined. Dashed lines indicate

points at which experimental variation and thus quantification errors
can occur (adapted with permission from Ref. [11])

Fig. 1 Schematic representation of the fraction of a proteome that can
by identified or quantified by mass-spectrometry-based proteomics.
Cellular proteins span a wide range of expression and current mass
spectrometric technologies typically sample only a fraction of all the
proteins present in a sample. Due to limited data quality, only a
fraction of all identified proteins can also be reliably quantified
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matching to a peptide/protein as an indicator for their
respective amounts in a given sample. As we will discuss in
the following sections, all of the mass-spectrometry-based
quantification methods have their particular strengths and
weaknesses (Table 1) but they are beginning to mature to an
extent that they can be meaningfully applied to the study of
biological systems on a proteomic scale. In contrast, the
statistical treatment and subsequent interpretation of quan-
titative proteomic data are still in their infancy, as the field
is only beginning to experience the particular challenges
associated with transforming qualitative protein identifica-
tion and post-translational modification data into reliable
quantitative information.

Metabolic labeling

The earliest possible point for introducing a stable isotope
signature into proteins is by metabolic labeling during cell
growth and division. Initially described for total labeling of
bacteria using 15N-enriched cell culture medium [2], it has
gained wider popularity in the form of the stable isotope
labeling by amino acids in cell culture (SILAC) approach
introduced by Mann and co-workers in 2002 [12]. In the

most commonly used implementation of the method, the
medium contains 13C6-arginine and 13C6-lysine which
ensures that all tryptic cleavage products of a protein
(except for the very C-terminal peptide) carry at least one
labeled amino acid resulting in a constant mass increment
over the non-labeled counterpart. Protein identification is
based on fragmentation spectra of at least one of the co-
eluting ‘heavy’ and ‘light’ peptides and relative quantitation
is performed by comparing the intensities of isotope
clusters of the intact peptide in the survey spectrum. In
contrast to full metabolic protein labeling by 15N, the
number of incorporated labels in SILAC is defined and not
dependent on the peptide sequence thus facilitating data
analysis. The main advantage of all metabolic labeling
strategies is that the differentially treated samples can be
combined at the level of intact cells. This excludes all
sources of quantification error introduced by biochemical
and mass spectrometric procedures as these will affect both
protein populations in the same way. Despite a number of
cases that demonstrate the feasibility of total 15N metabolic
protein labeling of higher organisms in vivo such as C.
elegans, Drosophila melanogaster [13], rat [14], or plants
[15], it is neither possible nor practical to apply this strategy
routinely. The cost and time required for creating and

Table 1 Characteristics and applications of quantitative mass spectrometry methods

Application Accuracy
(process)

Quantitative
proteome
coverage

Linear
dynamic
rangea

Metabolic protein labeling Complex biochemical workflows +++ ++ 1–2 logs
Comparison of 2–3 states
Cell culture systems only

Chemical protein labeling
(MS)

Medium to complex biochemical
workflows

+++ ++ 1–2 logs

Comparison of 2–3 states
Chemical peptide labeling
(MS)

Medium complexity biochemical
workflows

++ ++ 2 logs

Comparison of 2–3 states
Chemical peptide labeling
(MS/MS)

Medium complexity biochemical
workflows

++ ++ 2 logs

Comparison of 2–8 states
Enzymatic labeling (MS) Medium complexity biochemical

workflows
++ ++ 1–2 logs

Comparison of 2 states
Spiked peptides Medium complexity biochemical

workflows
++ + 2 logs

Targeted analysis of few proteins
Label free
(ion intensity)

Simple biochemical workflows + +++ 2–3 logs
Whole proteome analysis
Comparison of multiple states

Label free
(spectrum counting)

Simple biochemical workflows + +++ 2–3 logs
Whole proteome analysis
Comparison of multiple states

a In MRM mode, dynamic range may be extended to 4–5 logs [65]
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maintaining these systems is often incommensurate with the
value of the information provided. As a result, the main
application of metabolic labeling in higher eukaryotes to
date is SILAC in immortalized cell lines. Protein labeling in
excess of 90% is often achieved by 6–8 passages in
medium supplemented with heavy amino acids [12]. While
many cell lines can be converted quite readily, some do
require special attention. For example, some cell lines
require careful titration of the amount of arginine in the
medium in order to prevent metabolic conversion of excess
arginine into proline which in turn complicates data
analysis [16]. Cell lines that are sensitive to changes in
media composition or are otherwise difficult to grow or
maintain in culture may not be amenable to metabolic
labeling at all. A further limitation of metabolic labeling is
the restricted number of available labels. For SILAC, a
maximum of three conditions can be compared in one
experiment (unlabeled, 13C6, and

13C6
15N4-labeled amino

acids) which, albeit possible, complicates the analysis of,
e.g., time-course experiments. Because of the early combi-
nation of samples, metabolic labeling and SILAC in
particular is probably the most accurate quantitative MS
method in terms of overall experimental process. This
makes it particularly suitable for assessing relatively small
changes in protein levels or those of post-translational
modifications [17–19]. For the latter, it should be noted
though, that quantification on the peptide level is far from
trivial because all information is derived from a single or a
few observations.

Protein and peptide labeling

Post-biosynthetic labeling of proteins and peptides is
performed by chemical or enzymatic derivatization in vitro.
An elegant and specific way to introduce an isotope label
into peptides is the use of trypsin- or Glu-C-catalyzed
incorporation of 18O during protein digestion [20, 21]. This
has originally been employed to aid de novo sequencing of
peptides by mass spectrometry [22] but has recently also
been applied to quantitative proteomic applications (for a
recent review see Ref. [23]). Enzymatic labeling can be
performed either during proteolytic digestion or, more
commonly, after proteolysis in a second incubation step
with the protease. Incorporation of 18O into C-termini of
peptides results in a mass shift of 2 Da per 18O atom.
While trypsin and Glu-C introduce two oxygen atoms re-
sulting in a 4 Da mass shift which is generally sufficient
for differentiation of isotopomers, Lys-N and other
enzymes incorporate only one 18O molecule and should
therefore be avoided [24]. Acid- and base-catalyzed back-
exchange with concomitant loss of the isotope label can
occur at extreme pH values [25], but under the mild acidic

conditions typically employed for ESI- and MALDI-MS
18O-containing carboxyl groups of peptides are sufficiently
stable. Because peptides are enzymatically labeled, arti-
facts (i.e., side reactions) common to chemical labeling
can be avoided. A practical disadvantage is that full
labeling is rarely achieved and that different peptides
incorporate the label at different rates which complicates
data analysis [26, 27].

In principle, every reactive amino acid side chain can be
used to incorporate an isotope-coded mass tag by chemical
means (reviewed by Ong and Mann [11]). In practice,
however, side chains of lysine and cysteine are primarily
used for this purpose. In their pioneering work Gygi et al.
[1] developed the isotope-coded affinity tag (ICAT)
approach in which cysteine residues are specifically
derivatized with a reagent containing either zero or eight
deuterium atoms as well as a biotin group for affinity
purification of cystein-derivatized peptides and subsequent
MS analysis. Following the initial success of the ICAT
approach, several variations on this chemical reagent class
emerged to improve, e.g., recovery of labeled peptides or
chromatographic properties [28–31]. Other thiol-specific
reagents typically contain halogen-substituted carboxylic
acids or amides [32–35] or employ the Michael-type
addition reaction to carbonyl groups (e.g., maleiimide
esters and vinylpyridine) [36, 37]. As cysteine is a rare
amino acid, ICAT and related methods significantly
reduce the complexity of the peptide mixture which can
be advantageous when highly complex samples are
analyzed. However, ICAT is obviously not suitable for
quantifying the significant number of proteins that do not
contain any (or a few) cysteine residues and is of limited
use for analysis of post-translational modifications and
splice isoforms. Despite these drawbacks, ICAT and
sim ilar approaches will continue to be useful in a number
of broad (e.g., body fluid) or targeted (e.g., cysteine
protease) analyses.

Another group of labeling reagents targets the peptide
N-terminus and the epsilon-amino group of lysine resi-
dues. Most of the time, this is realized via the very
specific N-hydroxysuccinimide (NHS) chemistry or other
active esters and acid anhydrides as in, e.g., the isotope-
coded protein label (ICPL) [38], isotope tags for relative
and absolute quantification (iTRAQ) [39], tandem mass
tags (TMT) [40], and acetic/succinic anhydride [41–44].
Isocyanates or isothiocyanates have also been employed,
albeit to a lesser extent [45, 46]. In recent studies,
formaldehyde has been used for methylation of lysine
residues via Schiff base formation and subsequent reduc-
tion by cyanoborohydride [47–49]. This reaction is very
fast, very specific, and very cheap. However, a sufficiently
large mass shift between ‘heavy’ and ‘light’ labeled
peptides can only be achieved with deuterated formalde-
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hyde which in turn leads to partial LC separation of labeled
and non-labeled peptides, thus complicating data analysis
(discussed below).

In most of the aforementioned chemical modification
techniques, relative quantification is achieved by integra-
tion of MS signal over isotopomers of ‘heavy’ and ’light’
labeled peptides in survey spectra. Isobaric mass tagging
initially introduced by Thompson and co-workers [40]
differs from this concept by introducing tags that initially
produce isobaric labeled peptides which precisely co-
migrate in liquid chromatography separations. Only upon
peptide fragmentation are the different tags distinguished
by the mass spectrometer. This permits the simultaneous
determination of both identity and relative abundance of
peptide pairs in tandem-mass spectra. The commercially
available iTRAQ reagent [39] provides a further refinement
of this approach, allowing multiplexed quantitation of up to
eight samples. This has turned out to be particularly useful
for following biological systems over multiple time points
or, more generally, for comparing multiple treatments in the
same experiment.

Carboxylic acids in side chains of glutamic and aspartic
acid residues as well as the C-termini of polypeptide chains
can be isotopically labeled by esterification using deuterat-
ed alcohols [50, 51]. This reaction is particularly attractive
for the quantification of phospho-peptides because esterifi-
cation has been shown to reduce binding of acidic peptides
to ion metal chelate affinity chromatography (IMAC)
columns, thus improving the specificity of this enrichment
procedure [52]. Other, more tailored labeling techniques
have been developed, e.g., for quantification of phosphor-
ylated and glycosylated peptides. For the former, b-
elimination of phosphoric acid followed by Michael
addition using, e.g., ethanedithiol derivatives is typically
employed [53–56]. For glycopeptides, hydrazide chemistry
replaces the carbohydrate moiety with a labeled chemical
group [57].

Broadly speaking, the chemical properties of amino acid
side chains of proteins and peptides chains are rather
similar. Consequently, almost all chemical labeling methods
may also be applied to intact proteins. For example, the
ICPL reagent [38] has been employed for N-terminal
peptide labeling as well as lysine side chain labeling of
intact proteins. A similar protocol has been described for
iTRAQ [58]. In most cases, full protein denaturation
improves labeling results but care has to be taken to avoid
protein precipitation (by, e.g., the use of charged reagents).
Labeling of intact proteins can be quite advantageous since
it allows for further protein separation steps on the
combined samples. This may facilitate characterization of
protein isoforms by, e.g., 2D gel electrophoresis [38].
However, there are two important caveats to protein label-
ing: one is that trypsin does not cleave modified lysine

residues, which leads to significantly longer peptides that
generally are more difficult to identify by MS; second,
very high labeling efficiencies are required in case further
protein separation is desired prior to MS analysis, since
incomplete labeling impairs resolving power achievable
with, e.g., 1D and 2D gel electrophoresis. A general draw
back with all chemical labeling approaches is that they are
prone to side reactions that can lead to unexpected
products and which may adversely influence quantification
results.

Absolute quantification using internal standards

The use of isotope-labeled synthetic standards has a long
history in quantitative mass spectrometry. Originally de-
scribed in the early 1980s [59], it is now becoming more
broadly applied as a method commonly known as AQUA
(absolute quantification of proteins) [60]. In the simplest
case, absolute quantification can be achieved by the
addition of a known quantity of a stable isotope-labeled
standard peptide to a protein digest and subsequent com-
parison of the mass spectrometric signal to the endogenous
peptide in the sample. Unlike in metabolic labeling, where
relative quantitative information is acquired for a large
number of the proteins present in a mixture, the addition of
synthetic peptides to a proteome digest focuses on the
determination of the quantity of one or a few particular
proteins of interest. This approach is attractive for studies
aimed at, e.g., the analysis and validation of potential
biomarkers in a large number of clinical samples [61] or at
measuring the levels of particular peptide modifications
such as ubiquitinylation [62].

The approach has been refined by constructing synthetic
genes that express concatenated standard peptides which
upon tryptic digestion either provide multiple peptides of
the same protein for quantification or quantification stand-
ards for a group of proteins of interest [63]. Not only does
the provision of multiple peptides increase confidence in
quantification, the synthetic protein can also be added
earlier in the process than individual peptides, thus
controlling any potential bias encountered during protein
digestion. One notable example of following the synthetic
gene strategy is the determination of the stoichiometry of
the eight-membered eIF2B-eIF2 protein complex [64].

Given that tryptic digests of entire proteomes are very
complex mixtures, and that most mass spectrometers have a
rather limited dynamic detection range, there are a number
of limitations to the AQUA approach. One practical
drawback is that one has to ‘guess’ how much of the
labeled standard should be added to a sample. This amount
may be different for all proteins of interest as their
expression levels (used here in the sense of protein
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abundance rather than protein synthesis) may differ greatly
within a sample. Another limitation is the specificity of the
spiked standard as there are likely multiple isobaric
peptides present in the mixture. Both of these issues can
be greatly improved by a method called multiple reaction
monitoring (MRM) [62] in which the (triple quadrupole)
mass spectrometer monitors both the intact peptide mass
and one or more specific fragment ions of that peptide over
the course of an LC-MS experiment. The combination of
retention time, peptide mass, and fragment mass practically
eliminates ambiguities in peptide assignments and extends
the quantification range to 4–5 orders of magnitude [65].
Obviously, the choice of synthetic peptide standard is
important and is mostly determined empirically. However,
recent data suggest that it is possible to predict which of a
protein’s tryptic peptides will be most frequently observed
for a given proteomic platform and thus would be a suitable
quantification standard [66]. Despite the ability to calculate
protein amounts from an AQUA experiment, there are still
question marks as to how absolute these values are as any
sample manipulation prior to adding the synthetic standard
may bias the results (losses or enrichment). Consequently,
the amount of a protein in an experiment determined by
AQUA may not reflect the true expression levels of this
protein in a cell.

LC-MS/MS analysis of stable isotope labeled peptides

As described above, quantitation based on stable isotope
labeling can be achieved by signal integration in survey MS
spectra (e.g., SILAC) or tandem MS spectra (e.g., iTRAQ).
For both approaches, several points have to be considered
in the design and analysis of an experiment. Although the
assumption that stable isotope labeling does not alter the
physicochemical properties of a peptide is generally valid,
it has been observed that deuterated peptides show small
but significant retention time differences in reversed-phase

HPLC compared to their non-deuterated counterparts [67].
This complicates data analysis because the relative quantities
of the two peptide species cannot be determined accurately
from one spectrum but requires integration across the
chromatographic time scale. Retention time shifts are far
less pronounced for labels such as 13C, 15N, or 18O isotopes
[68], so that the additional signal integration step over
retention time can generally be omitted.

Another requirement for any stable isotope labeling
approach is that the heavy label can be clearly distinguished
from the unlabeled peptide or any other unrelated ion species
(Fig. 3a). For quantification in survey MS spectra, it is
essential that the mass shift introduced by the label is at least
4 Da in order to distinguish the isotopomer clusters of the
labeled and unlabeled forms of the peptide. As isotopomer
clusters increase in width with increasing peptide mass, the
application of labeling methods such as methylation and
enzymatic 18O labeling becomes limited for larger peptides.
Reporter ions used for quantification in tandem MS spectra
should be designed such that interference by ordinary peptide
fragments is minimal. For the iTRAQ label, the m/z region of
114–117 was chosen for this reason. Still, some interferences
have been identified (notably the 116.1 Da y(1) fragment ion
of peptides containing a C-terminal proline residue [69]) and
these data points have to be carefully removed in the data
analysis process.

A further parameter impacting accuracy and dynamic
range of quantification is the mass spectrometric detection
system itself. In survey MS spectra, the definition of very
low and very strong signals can be problematic. At very
low signal, peptide ions are often difficult to distinguish
from background noise (Fig. 3b) and for very strong
signals, the detector may become saturated (Fig. 3c). In
practice, saturation is more often observed for quadrupole
TOF instruments than ion traps because these latter devices
can control the number of ions before detection [70]. In any
case, the relatively recent introduction of high-resolution/
high mass accuracy mass spectrometers in proteomics has

Fig. 3 Examples illustrating mass spectral features relevant for
quantification. a Example of a SILAC-labeled peptide pair suitable
for quantification. The spectra displays the characteristic 6 Da (3 m/z)
mass difference between light and heavy forms of the peptide, good
signal to noise ratio and no interfering signals. Signal intensities

indicate a 1:1 abundance ratio. b Example of a peptide and other
interfering signals with signal to noise ratios too low for reliable
quantification. c Example of a peptide signal saturating the detector
and thus distorting the isotope pattern to a degree that the spectrum is
not suitable for quantification
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greatly facilitated the ability to quantify proteins in complex
proteomes because the increased instrument performance
enables the exact discrimination of peptide isotope clusters
from interfering signals caused by, e.g., co-eluting and near-
isobaric peptides and other chemical entities [71–73]. For
quantification in tandem MS spectra, saturation effects are
rarely a problem. Instead, low-intensity spectra are fre-
quently obtained and may result in less robust quantitation
values due to poor ion statistics. Unlike for quantification in
survey spectra, the contribution of peptidic or chemical
background noise to quantification does not depend on the
mass resolution of the mass spectrometer but on the size of
the m/z window chosen for isolation of peptides for
sequencing (typically 2–6 m/z). All ions present in this
window will contribute to the signal of the, e.g., iTRAQ
reporter ions. As a result, it is not always clear to what
extent quantification was contributed by the peptide of
interest or by background. This can sometimes lead to a
large underestimation of true changes, especially for very
weak peptide signals.

Taken together, the limits to quantification of complex
proteomes by stable isotopes is first and foremost an issue
of signal interference caused by co-eluting components of
similar mass. Therefore, the most straightforward way for
optimizing quantitative analyses is to decrease sample
complexity by increasing HPLC gradient times or by
biochemical fractionation prior to LC-MS analysis.

Label-free quantification

Currently, two widely used but fundamentally different
label-free quantification strategies can be distinguished: (a)
measuring and comparing the mass spectrometric signal
intensity of peptide precursor ions belonging to a particular
protein and (b) counting and comparing the number of
fragment spectra identifying peptides of a given protein. In
the former approach, the ion chromatograms for every
peptide are extracted from an LC-MS/MS run and their
mass spectrometric peak areas are integrated over the
chromatographic time scale. For low-resolution mass
spectra this is typically done by creating extracted ion
chromatograms (XICs) for the mass to charge ratios
determined for each peptide [74]. More recently, this
concept has been extended to high-resolution data to
include contributions of 13C isotopes to the overall signal
intensities [75]. The intensity value for each peptide in one
experiment can then be compared to the respective signals
in one or more other experiments to yield relative
quantitative information [74, 76–80]. For proteomic analy-
sis of very complex peptide mixtures, three important
experimental parameters affect the analytical accuracy of
quantification by ion intensities. (i) It is advantageous to

employ a high mass accuracy mass spectrometer because
the influence of interfering signals of similar but distinct
mass can be minimized. (ii) The peptide chromatographic
profile should be optimized for reproducibility to ease
finding corresponding peptides between different experi-
ments. This is not a trivial task and special software has
been developed to align LC-runs prior to identifying
corresponding peptides [81–84]. (iii) The right balance
between acquisition of survey and fragment spectra has to
be found. While extensive peptide sequencing by tandem
MS is required to identify as many proteins as possible in
complex mixtures, a robust quantitative reading by ion
intensities requires multiple sampling of the chromato-
graphic peak by survey mass spectra. Typically, multiple
fragment spectra are acquired for every survey spectrum at
acquisition rates ranging from 0.2 s/spectrum (ion traps) to
1–3 s/spectrum (quadrupole-TOF instruments). Given that
chromatographic peak widths are in the order of 10–30 s for
nano-LC separations, ion traps have an inherent advantage
over QTOFs because many more MS to MS/MS cycles can
be performed within the available chromatographic time.
Still, even for fast sampling instruments, better quantifica-
tion accuracy will inevitably mean poorer proteome
coverage and vice versa. This dilemma has led some
laboratories to conduct two separate experiments for each
sample: one which focuses on identifying as many peptides
as possible by MS/MS and a second performed in MS-only
mode in order to optimize sampling of intact peptide
signals. In these approaches, matching of integrated peak
intensities to identified peptides is performed by using a
combination of accurate mass and retention time [84–86].
An alternative has been proposed in which the mass
spectrometer no longer cycles between MS and MS/MS
mode but aims to detect and fragment all peptides in a
chromatographic window simultaneously by rapidly alter-
nating between high- and low-energy conditions in the
mass spectrometer [87–90]. Obviously, there are challenges
with analyzing such data from complex samples as many
fragmentation spectra will be populated with sequence ions
from multiple peptides each contributing differently to the
overall spectral content.

The peptide or more recently introduced spectral
counting approach [91–93] is based on the empirical
observation that the more of a particular protein is present
in a sample, the more tandem MS spectra are collected for
peptides of that protein. Hence, relative quantification can
be achieved by comparing the number of such spectra
between a set of experiments. In contrast to quantification
by peptide ion intensities, spectral counting benefits from
extensive MS/MS data acquisition across the chromato-
graphic time scale both for protein identification as well as
protein quantification. However, the commonly employed
dynamic exclusion of ions that have already been selected

Anal Bioanal Chem (2007) 389:1017–1031 1023



for fragmentation is detrimental for accurate quantification
[94]. Although very intuitive and attractive in practical
terms, the spectrum counting approach is still controversial
because it does not measure any direct physical property of
a peptide. It further assumes that the linearity of response is
the same for every protein. In fact, the spectrum count
response is different for every peptide because, e.g., the
chromatographic behavior (retention time, peak width)
varies for every peptide. Therefore, even reasonable
quantification requires the observation of many spectra for
a given protein. Old et al. [94] have shown that although it
is possible to detect threefold protein changes with as few
as four spectra; this number increases exponentially for
smaller changes (ca.15 spectra for twofold). At the same
time, saturation effects will be observed at higher spectral
counts and saturation levels will be different for all proteins
which renders the assessment of the dynamic range of
observed changes difficult.

Nevertheless, the correlation between amount of protein
and number of tandem mass spectra does hold and has led
researchers to extend the concept to the estimation of
absolute protein expression levels. In the first of a series of
papers, Rappsilber et al. [95] computed a protein abundance
index (PAI) by dividing the number of observed peptides
by the number of all possible tryptic peptides from a
particular protein that are within the mass range of the
employed mass spectrometer. In a subsequent refinement,
the same group transformed the PAI into an exponentially
modified form (emPAI) [96] which showed a better
correlation to known protein amounts. Further advances
have been made by using computational models that predict
which peptides of a given protein are likely to be detected
by the mass spectrometer in the first place and thus would
form a better basis for quantification [97–99, 66]. For
example, results obtained by the absolute protein expres-
sion profiling (APEX) method [99] suggest that absolute
protein expression can be determined to within the correct
order of magnitude.

Label-free approaches are certainly the least accurate
among the mass spectrometric quantification techniques
when considering the overall experimental process because
all the systematic and non-systematic variations between
experiments are reflected in the obtained data (Fig. 2).
Consequently, the number of experimental steps should be
kept to a minimum and every effort should be made to
control reproducibility at each step. Nonetheless, label-free
quantification is worth considering for a number of reasons.
In simple practical terms, the time-consuming steps of
introducing a label into proteins or peptides can be omitted
and there are no costs for labeling reagents. In terms of
analytical strategy, the following points may also be
important: (i) there is no principle limit to the number of
experiments that can be compared. This is certainly an

advantage over stable isotope labeling techniques that are
typically limited to 2–8 experiments that can be directly
compared. (ii) Unlike for most stable isotope labeling
techniques, mass spectral complexity (in terms of detected
peptide species within a particular chromatographic time
window) is not increased which, in turn, might provide for
more analytical depth (i.e., number of detected peptides/
proteins in an experiment) because the mass spectrometer is
not occupied with fragmenting all forms of the labeled
peptide. (iii) There is evidence that label-free methods
provide higher dynamic range of quantification than stable
isotope labeling (Table 1) and therefore may be advanta-
geous when large and global protein changes between
experiments are observed. However, particularly for spec-
tral counting, this comes at the cost of unclear linearity and
relatively poor accuracy [94].

Analysis of quantitative MS data

When contemplating a data analysis strategy for proteomic
data generated by quantitative mass spectrometry, it is
worth reconsidering a couple of principle points. Quantita-
tive proteomic data are typically very complex, and often of
variable quality. This is in part because the data are
incomplete: even the most advanced mass spectrometers,
which can acquire several tandem MS spectra per second,
are often overwhelmed by the number of peptides present
in a sample. As a consequence, only a subset of all proteins
present can be identified in any one analysis [100]. For
protein quantification, it is further mandatory to detect a
protein in all experiments that should be compared. As a
result, often only a subset of identified proteins can actually
be quantified (Fig. 1) [92]. Identification and quantification
rates are direct functions of sample complexity. While a
large fraction of proteins present in, e.g., affinity purifica-
tions can be identified and quantified using a reasonable
number of acquired spectra, a much smaller fraction of the
content of whole proteome shotgun experiments will be
covered and with fewer spectra for each protein. This clearly
limits the confidence in quantification results.

These general considerations aside, practitioners of
proteomics will soon face a number of practical challenges
in analyzing quantitative mass spectrometric data: (i)
quantitative readings must be extracted from MS or MS/
MS spectra; (ii) peptide and protein identification must be
performed; (iii) the two types of information must be
merged and quality controlled; (iv) the applicable statistical
methods have to be identified; and (v) the individual steps
have to be combined into a workflow which bridges gaps
between commercially available software and custom-built
tools and which ideally also allows for automating most of
the tasks (Fig. 4).
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For protein quantification based on spectrum counting,
the data processing steps are basically identical to the
general protein identification workflow in proteomics
which is one of the reasons why this approach has become
so popular. Researchers can choose from a variety of
methods available for automated protein identification and
subsequent (probabilistic) validation of spectrum-to-peptide
matches (for a recent review see Ref. [101]). It should be
emphasized that for any quantification method it is
mandatory to consider only those spectrum-to-peptide
matches that are unique for a particular protein [11].

Extracting quantitative information from MS
and MS/MS spectra

Quantification methods based on ion intensities, regardless
of whether employing stable isotope labeling or not, require
a number of additional steps prior to protein quantification
(boxed area in Fig. 4). Two particular elements are
important to mention here: intensity integration (i) within
the mass spectrum (centroiding) and (ii) across the
chromatographic peak. For low-resolution MS data, both
aspects are carried out in one operation by extracting the ion
chromatograms from the LC-MS data. For high-resolution
MS data, the procedure is more complex and typically
performed in two steps. Signal intensity integration within
the mass spectrum can either utilize the intensity/area of the
monoisotopic peak or the sum of the intensities/areas of all

isotopomers of a peptide. Each method has its merits and
detractions: monoisotopic peak integration is relatively
straightforward to implement but not very sensitive partic-
ularly for larger peptides for which the monoisotopic peaks
only constitute a minority of the total signal intensity. In
addition, the use of heavy isotopes distorts the relative
isotope distribution of peptides which leads to inaccuracies.
In contrast, the summed area of the entire isotope cluster is
the most sensitive and accurate method [102] as it utilizes
all of the data but is more difficult to implement
computationally. As discussed in a previous section, signal
intensity integration over the chromatographic time scale is
primarily required for label-free quantification as well as
those stable isotope reagents that lead to significant differ-
ences in chromatographic behavior. For methods which do
not suffer from this shortcoming, time integration can be
performed but is not required. Instead, collection of several
spectra for each peptide is generally useful in order to
obtain several quantitative readings.

Quality control of raw MS data

There are several sources of potential error in the mass
spectrometric readout of an LC-MS experiment that can
negatively affect the results of peptide quantification.
Spectra for which these errors are detected should be
filtered out prior to computing quantification values. The
first of these issues is the presence and variability of

Fig. 4 Generic data processing
and analysis workflow for
quantitative mass spectrometry.
Yellow icons indicate steps
common to all quantification
approaches with or without the
use of stable isotopes. Blue
icons in the boxed area refer to
extra steps required when using
mass spectrometric signal inten-
sity values for quantification
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spectral background noise (Fig. 3b) which can be filtered
out by most if not all available commercial and academic
data processing packages. A second common issue is the
presence of interfering signals other than background noise
(Fig. 3b). For very complex peptide mixtures, these often
constitute co-eluting peptides of very similar m/z values
which in turn will render the correct assignment of signal
intensities to particular peptide ions difficult. This is true
for quantification in both MS and MS/MS spectra and such
spectra should be removed from the analysis. Third, strong
signal intensities can lead to detector saturation for some
mass spectrometers (particularly quadrupole TOF instru-
ments, Fig. 3c) which distorts the natural isotope intensity
distribution and thus leads to false quantitative readings.

For stable isotope labeling, further quality criteria must
be considered. One very simple and often incurred problem
is systematic bias introduced by imperfections in mixing
the two protein populations. Mixing errors can most of the
time be determined experimentally and apply uniformly to
all protein quantification values and are thus easily
corrected for. A second systematic error is represented by
the isotope purity of the employed labeling reagent which
rarely exceeds 95–98%. Although this may not appear to be
a significant source of uncertainty and, again, can be easily

corrected for, isotope impurities lead to increased spectral
interferences and, more importantly, limit the dynamic
range of detectable differences between samples. A similar
argument applies to incomplete incorporation of the isotope
label into proteins and peptides. Again, while isotope
incorporation can be measured and correction factors can
be applied, the combination of the above items limits the
dynamic range of detectable differences between samples to
approximately 20–30:1. Consequently, determined changes
are often smaller than their true values. It is important to
keep in mind that this effect can be much more pronounced
when spectral background contributes significantly to
overall spectral intensity.

From spectra to relative protein quantification

For the spectrum counting approach, relative protein
quantification between two or more samples is simply
performed by comparing the respective numbers. If ten
spectra are observed for a protein under condition 1 and 15
spectra under condition 2, the change between the two
conditions is 1.5-fold. In contrast, for all approaches that
measure signal intensities of peptide spectra, a quantitative
reading is obtained for each spectrum. Obviously the accuracy

Fig. 5 a Distribution of measured changes from peptide spectra as a
function of spectrum intensity for a single protein mixed in a 2:1 ratio.
Diamonds represent intensity readings from individual spectra. The
red line indicates the expected ratio of 2. It is evident that variations in
change determination are much larger for low-intensity spectra than
for medium- or high-intensity spectra. b Protein change determination
by linear regression analysis. Diamonds represent intensity readings
from individual spectra for samples 1 and 2 (same data as in a). The
slope of the two-sided regression line approximates the expected
twofold difference in protein quantity between the two samples. c
Histogram showing the relationship between precision of quantifica-

tion (expressed as relative standard deviation, RSD) and the number of
observed peptide spectra for a given protein from replicate experi-
ments. Not surprisingly, precision increases with increasing number of
spectra. d Change distribution for approximately 1,000 proteins
identified and quantified between two experimental conditions in a
single experiment. Diamonds represent individual protein fold
changes in ascending order. In the absence of replicate experiments,
data points between yellow lines (arbitrarily set at 2σ) are typically not
considered to change significantly. However, these data points may
contain many false negatives (small but significant changes)
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of the protein quantification is determined by the accuracy
of each peptide (spectrum) determination. The resulting
data are spectrum-related quantity measures of varying
precision. As an experiment typically produces a number of
spectra per protein, these measurements have to be
aggregated in a way that returns the best (i.e., most precise)
protein quantification measure. Most publications to date
rely on simple averaging of ratios [103], but as exemplified
in Fig. 5a, variation of change determination is a function
of signal intensity. Thus, low-intensity or noisy data may
easily distort the mean value of computed ratios [104]. To
overcome this problem, intensity thresholds have been
employed [65]. However, these mostly arbitrary thresholds
may also lead to arbitrary reduction of proteins that can be
quantified. As an alternative, results can be improved either
by calculation of an intensity weighted average, by
summing up of all measured quantities followed by
calculation the protein ratio [103, 75], or by calculating a
linear regression (allowing for two dimensions of freedom)
to determine the protein ratio (Fig. 5b) [105]. Apart from
mass spectrometric signal strength, accuracy of quantifica-
tion also benefits from the availability of multiple spectra
for a given protein (Fig. 5c).

Statistical analysis of experimental data

Proteomic experiments comparing a number of states of a
biological system typically generate complex data. An
understanding of the experimental setup and the nature
and quality of the obtained data are required to devise
appropriate statistical methods. Experiments typically fall
into two distinct categories: either the interrelation between
a protein’s abundance (or another property) and a certain
sample condition is examined or the interaction between
proteins is analyzed. Table 2 lists examples of such
questions and some appropriate statistical strategies that
have been applied to answer them. The detection of protein
abundance changes is discussed in more detail below as it
represents one of the major applications of proteomics.
Most of the available statistical methods have previously

been applied to gene expression analysis but can often also
be applied to quantitative MS data. However, the required
data preparation steps such as normalization might be
significantly different.

Data preparation

Raw data from quantitative MS experiments are generally
not suitable for statistical analysis, thus a number of
preparative steps are required. First, raw data are typically
not normally distributed, an assumption made by many
statistical tests. Therefore, data are frequently log-trans-
formed assuming that the data are lognormal-distributed.
This operation typically also harmonizes the variance of
data (otherwise high values would have large variances and
vice versa). If replicates of the experiment have been
generated, normalization of their data is mandatory because
technical bias may overshadow the underlying biological
effects (for details on normalization techniques, see Refs.
[106–108]). As discussed above, technical effects include
sample mixing errors, incomplete isotope incorporation, or
isotope impurity. In many cases, systematic technical bias
can be measured directly but in some cases requires
dedicated experimentation (e.g., by a label swap experiment
[109, 110]) to determine its source. The resulting informa-
tion is used to build correction functions that are consec-
utively applied to the data. It should be noted that it is very
likely that not all manifesting sources of systematic error
have been described yet or that these are not readily
amenable to determination (e.g., background contribution
in iTRAQ experiments). It can be expected though that with
the rapid evolution of proteomic technologies, many of
these yet unknown sources of error will be uncovered and
the learnings subsequently used to sharpen the data which,
in turn, increases data quality.

Another challenge to a statistical treatment of proteomic
data is the mostly random sequencing of peptides by the
mass spectrometer. As a result, not every available peptide
is identified in every experiment. This effect is more pro-
nounced for peptides of low abundance and poor detectabil-
ity, resulting in many missing values in an experiment.

Table 2 Statistical methods for proteomics

Category Question Analysis suggestions

Protein change between
conditions

Does a protein behave significantly different
between two samples?

Multiple hypothesis testing

Does a protein exhibit time-dependent change? Analysis of variance (ANOVA)
Is the sample a member of a defined class of
samples?

Classification methods (e.g., linear discriminant analysis,
support vector machines)

Dependencies between
proteins

Which proteins behave similarly in the
experiment?

Cluster analysis
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However, statistical methods often require complete data. In
such cases, missing values may be estimated by, e.g.,
averaging available values of the protein from other
replicates or using related values from other proteins from
the same experiment. It should be noted though that
estimating values inevitably results in decreased statistical
power [111, 112].

Values that are grossly different from comparable
observations (outliers) require special attention. They can
either indicate a true observation of a particular peptide
species, e.g., a regulated post-translational modification, or
a false reading. In both cases, these data points should
initially be excluded from the calculation of protein
quantities but not categorically rejected. A common way
to spot outliers is visual inspection by the investigator,
leaving considerable room for subjective judgement. Dur-
ing calculation of protein values from individual spectra by
linear regression (see above) outlier detection on the
spectrum level is possible using established methods [113,
114] but may result in loss of valuable data. For data
correction at the protein level, methods for multivariate data
can also be adapted [115, 116].

Detection of differential protein expression

It is not uncommon that publications reporting results of
proteomic experiments using quantitative mass spectrome-
try base conclusions on measurements generated in one or
two experiments. This is understandable given the often
limited availability of specimen as well as the cost and time
required to perform and analyze these samples. However, in
light of the often considerable experimental variation, it is
likely that those studies will not realise their full potential.
For example, the graph shown in Fig. 5d represents a rank
order list of the observed changes between two experiments
for approximately 1,000 proteins. Proteins at the extremes
of the distribution change the most and are therefore often
considered to be the most interesting. While this might
often be true when these observations are backed by many

spectra indicating this change, there are two important
caveats. In this representation, small but potentially
significant changes go unnoticed (false negatives) and, in
the absence of repeating the experiment, there is no way of
assessing if the observed large protein changes that are
backed by few spectral observations can be reproduced
(false positive). Even small numbers of repetitions can
increase confidence in the results considerably. In addition,
the use of statistical testing methods adds options to
determine the probability of false decisions. A typical
situation is the comparison of protein levels between two
different samples with the goal to detect those proteins that
are significantly changed between conditions. This biolog-
ical question can be formulated as a problem in multiple
hypotheses testing that describes a simultaneous test for
each protein on the null hypothesis of no change in protein
measure between the two conditions. A standard approach
to such a multiple testing problem consists of two aspects:
(i) computing a test statistics and (ii) applying a multiple
testing procedure to determine which hypothesis to reject
(change or no change) while controlling a defined false
positive error rate [117]. Computing the test statistic for each
protein can be carried out, e.g., by employing the frequently
used t-test. This test expects the data to be normally
distributed, an assumption that is not always justified and
requires a significant number of replicates in order to return
reliable results (Table 3). For lower replication numbers (2–
3) the so-called local-pooled-error test (LPE) has been found
to be useful provided that protein changes are not too small
[118–120]. For data with unknown distribution character-
istics, non-parametric tests can also be used that are agnostic
towards the data’s distribution but come at the expense of
statistical power [121].

In the proteomics case where many proteins are tested
simultaneously, the probability of committing an error
increases often dramatically. For example, when consider-
ing a list of hundreds of proteins at a defined error rate of,
e.g., 0.01, it is likely that several false positives will occur
by chance. However, when setting the thresholds too

Table 3 Characteristics and applications of statistical tests

Test Requirements Statistical power Application

Tests for experiments with replicates
t-test Replications, n>3 +++ All quantitation methods

Data normally distributed
LPE-test Replications, n>1 ++ All quantitation methods

2–3 replicates
Strong changes

Tests for experiments without replicates
G-test (Very) large number of peptide spectra + Spectrum counting
Fischer’s exact test (Very) large number of peptide spectra + Spectrum counting
AC-test (Very) large number of peptide spectra + Spectrum counting
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conservatively to minimize false positive rate (i.e., the rate
that truly null features are called significant), this often
leads to an unacceptable increase in the false negative rate
(i.e., the rate that truly significant features are called null).
Commonly used alternative measures of error rates in
multiple testing procedures are the family wise error rate
(FWER; i.e., the rate that one truly null feature is called
significant among all tests) and the false discovery rate
(FDR; i.e., the rate that features called significant are truly
null) which break up the direct dependency between false
positive and false negative rates. Instead of simply report-
ing rejection or acceptance of the specified hypothesis
using these methods, a p-value connected to the test can be
defined which describes the significance of a test as the
smallest possible significance level at which the null
hypothesis would be rejected. Various procedures for
deriving adjusted p-values for multiple hypothesis testing
have been suggested, e.g., the Bonferroni adjusted p-value
for FWER and the q-value for FDR [122]. q-Values have
since also been adopted in proteomics research [123, 124].
A detailed overview of multiple hypothesis testing has been
given by Dudoit and co-workers [125].

Sampling statistics

For a number of proteomic applications, sampling statistics
(e.g., spectrum count, peptide count, sequence coverage)
shows increasing potential. Zhang and co-workers [120]
recently compared the aforementioned three approaches
and found that the spectrum counting approach offered the
greatest reproducibility. This is probably not surprising
given that this approach generates many more data points
than peptide counting or measuring sequence coverage. In
addition this paper explores a number of statistical methods
for data analysis. For experiments that feature three or more
replicates of each condition, statistical difference can be
assessed by the t-test as described above. However, if
repetitions are not available, other statistical options have to
be considered. To that end, tests may be applicable that
attempt to mimic replicates by pooling certain features. For
example, for each detected protein, spectral counts from a
pair-wise experiment can be arranged in a two-way table
(proteins vs. conditions). A protein is then called differen-
tially expressed if its proportion of spectrum counts to the
total spectrum count in the experiment is significantly
different between both conditions. There are a number of
possible statistical tests using different hypotheses for this
approach (Table 3, bottom). The authors of the aforemen-
tioned paper conclude that Fisher’s exact test, the AC-test,
and the G-test return comparable results. However the G-
test is computationally simpler and can be generalized for
multi-condition experiments and thus may be the more
versatile approach. Results typically improve with in-

creased sampling (total number of spectrum counts in an
experiment). Despite the fact that the commonly used
dynamic exclusion option during LC-MS analysis violates
random sampling, Zhang et al. showed that the approach
can be generally useful [120].

In contrast to statistical estimation, the performance of a
chosen statistical test can often also be assessed experi-
mentally by means other than multiple repetitions. One way
of measuring errors directly and under the same analytical
conditions is to offset the measurement of a particular
sample to a dilution of the very same sample [126]. Also,
spiked proteins have been used to generate reference data
for a set of proteins with known behavior that can be
utilized for ‘calibrating’ an experiment type [92]. Once the
statistical parameters have been learned, these may be
applied to subsequent experiments without the need for
repetition. Although the statistical power of such approaches
is lower than those based on multiple repetitions of the same
experiment, the former may be sufficient particularly for
samples of low protein complexity (e.g., affinity purifica-
tions). Further assessment of data significance may be
provided by curve fitting methods (e.g., the LOWESS fit)
which can reveal regions of random experimental error in the
observed dataset [123].

Concluding remarks

A multitude of methods has emerged for the analysis of
simple and complex (sub-)proteomes using quantitative
mass spectrometry, and the field is beginning to learn for
which type of study these methods can be meaningfully
applied. However, significant further improvements to
experimental strategies are required particularly for the
quantitative analysis of post-translational modifications. It
is probably fair to say that the field is still far from being
able to generate quantitative proteomic data at a scale
which would allow the comprehensive investigation of a
biological phenomenon. At the same time, the recent
exponential increase in data volume and complexity
demands the development of appropriate statistical
approaches in order to arrive at meaningful interpretations
of the results. This can only be achieved if the influence of
the employed technologies on the results obtained is well
understood and by ensuring that experimental design
follows the biological context so that the ‘right statistics’
can be developed for the problem at hand in order to
generate scientific insight.
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